Saturday, March 24, 2007

Teaching Probability to Young Children

Many people assume that probability is a mathematical concept that is introduced and taught in junior high and high school, however, after reading and reviewing much research, I now realize that this idea is untrue. Young children seem to have an intuitive understanding of chance and allowing them to explore this in the early grades simply enhances their probabilistic thinking, number sense, and mathematical connections. Principles and Standards emphasizes that activities in the early grades should take the form of answering questions about the likelihood of events, using such vocabulary as more likely or less likely. Children must be able to recognize that although individual events may not be predictable, there exists trends and patterns that can often occur.

When doing my research it became quite clear that problems dealing with probability should be taught through hands-on experiences. It is extremely important that children participate in hands-on activities such as playing with dice, spinners, or coins as a means to investigate, make predictions, and engage in probabilistic thinking. As the Atlantic Canada Mathematical Curriculum Guide points outs, it is also important to use informal experiences that can be built on and expaned during the primary grades. These experiences should involve real-world situations both inside and outside the classroom where math is used. In doing this, mathematical learning becomes relevant to students. Templates for sample spinners and dice cutouts that can be used in the classroom can be printed off the following website:


In today's world computer simulations can also be very useful in assiting in the teaching of probability. Many websites and computer programs allow students to watch as a spinner spins or a coin flips and random outcomes are produced with the press of a button. I think the use of computers would be a great addition to a lesson on probability because it provies the hands-on experience that is essentail to learning and then also combines it with an animated visual graphic which is very appealing to children. It enables students to investigate more realistic situations than were previously possible. Having the opportunity to complete problems using a computer allows children to get a break from the usual paper and pencil tasks and actually be interested and have fun while learning their math. There are hundreds of interavtive online activites that can be used to assist in the learning of probability, however, it is important to ensure that they provide accurate information and are age appropriate for the students in your classroom. The following are several computer activites that I found online that I thought would be useful when teaching probability:



The following are references that I used while creating this blog:


National Council of Teachers of Mathematics

The Atlantic Canada Mathematical Curriculum Guide

Van De Walle, John. and Sandra Folk. Elementary And Middle School Mathematics: Teaching Developmentally. Canada: Pearson Education Inc, 2005


Thanks!

Children's Understanding of Probability

Understanding how students' think about a particular topic is an important component of instruction because this kind of knowledge is useful to teachers as they plan and implement instruction. It is for this reason that I choose to research information about how children think and comprehend the topic of probability and chance.

There often exists many misconceptions about chance and probability in the minds of young primary children. When reading an article written by Jeffery A. Frykholm, he says that, “children, roughly up to the age of seven, often struggle with concepts of uncertainty and are generally unable to distinguish events that will necessarily occur from those that may or may not occur.” Many times they believe that an event will happen because they are lucky or it is their favorite colour. This can be seen when little children get very excited while playing a game of Snakes and Ladders because they simply do not understand that the outcome of the game is completely random. In order to help deal with such misconceptions, teachers must allow time for children to be explore and experiment with the concept of probability over a long period of time. They need to develop the idea that some events are more, less likely or equally likely to occur. I will get into more detail about ways to teach children probability in a future blog.

Although there does exist some misconceptions about probability, most young children seem to have some type of understanding of the concept. Frykholm says in his article that young children have an intuitive understanding of chance and that this should be developed through explorations in the early grades that will enhance children's probabailistic thinking, number sense, mathmatical connections. The understandings that children bring to school are typically learned from games that they play at home in informal settings, An example of such a game is the childhood rhythm “Eenie, Meenie, Minie Moe” used when choosing a person to be “it”. There seems to be an acceptance of this form of random chance and even young children seem to understand the process. One article that I read describes student's understanding of probability and probabilistic thinking in terms of levels that range from one to four. Level one involves students who use only subjective reasoning and have a narrow way of thinking that is early distracted and misled by irrelevant information. A student who is functioning in this prestructural level would probably reason that the color red has selected because it is their favorite color. This level is often associated with concrete-symbolic thinking that often involves myths and mental imaging. Level two includes students who are in a transitional period that is characterized by naive and inflexible attempts to quantify probabilities. In this unistructural level, children become involved in probability tasks in relevant ways, however usually only one aspect is pursued. Students are beginning to function in concrete-symbolic mode and are able to use mathematical language and symbols to represent their understandings. The third level of thinking involves children who exhibit both the multistructural and relational levels of thinking and uses quantitative reasoning when dealing with probability tasks. Unlike students in level two, children in this level recognize that there are more than one relevant feature in a probability tasks and they can coordinate and quantify thinking about sample space in relation to probability. Students who reach the fourth and final level of thinking are able to make connections between sample space, outcomes, and probability. Using this relational level, they can use valid numerical measures to describe the probabilities of events and conditional events. Children are able to make meaning from abstract ideas of probability by relating them to their own experiences.

In doing research about children's understanding of probability, I found it really hard to find information and I still have some questions that I would liked answered. I feel as though there are many contradicting ideas out there involving this topic and I must do a little more research in order to get a better understanding. Perhaps getting some first hand experience while working with children on probability would help clear up many of my remaining questions.


The following are references that I used while creating this blog:


Van De Walle, John. and Sandra Folk. Elementary And Middle School Mathematics: Teaching Developmentally. Canada: Pearson Education Inc, 2005


Fykholm, Jeffery A. “Eenie, Meenie, Minie, Moe: Building on intuitive notionsof chance.” Teaching Children Mathematics 8.2 (2001): 112 - 118


Graham A. Jones, Cynthia W. Langrall, Carol A. Thornton, and A. Timothy Mogill.
“Student's Probabilistic Thinking in Instruction.”
Journal for Research in Mathematics Education 30.5 (1999): 487 - 519

Thanks!